Estimating internet adoption around the world using a sample of Facebook users

PAA 2018

Dennis M. Feehan
UC Berkeley

Curtiss Cobb
Facebook
The problem

Population of interest
The problem

Population of interest

People who use the internet, mobile phones, a website, etc…
Digital inequalities and why they matter
Laura Robinson, Sheilia R. Cotten, Hiroshi Ono, Anabel Chaz, Wenhong Chen, Jeremy Schulz, Timothy M. Hale

"Department of Sociology, Santa Clara University, Santa Clara, USA; School of International Corporate Strategy, Hitotsubashi University, Tokyo, Japan; School of Social Sciences and Media Studies/Sociology, The University of Western Ontario, London, Ontario, Canada; Anthropology, University of Texas, Austin, TX, USA; Institute for Connected Health, Partners for Excellence in Science and Medicine, Boston, USA"

The Arrival of Fast Internet and Skilled Job Creation in Africa
Jonas Hiert Columbia University & BREAD & NBEK
Jonas Poulson Harvard University
September 10, 2016
WWW.ECONSTOR.EDU

Chinn, Menzie D.; Farlie, Robert W.

Working Paper
The Determinants of the Global Digital Divide: A Cross-Country Analysis of Computer and Internet Penetration
IZA Discussion paper series, No. 1305

Provided in Cooperation with:
Institute for the Study of Labor (IZA)

The plan

- Methods: network reporting with an online sample
- Study design: estimating internet adoption in 5 countries
- Results: estimates and sensitivity
- Next steps
Methods: network reporting
Methods: network reporting

The idea: survey respondents are connected to other people through many different kinds of personal networks. We can ask respondents questions about their personal network and learn about more than just the respondent.
Network reporting

Approaches like this have been used in lots of different situations

- Deaths
- Epidemiologically important groups (drug injectors, sex workers)
- Migrants
- ... and many others
network reporting

- sibling survival
- network scale-up
- multiplicity sampling
- indirect sampling
- ...

How it works
total out-reports = total in-reports

\iffalse
\Rightarrow \text{total out-reports} = (\text{number of internet users} \times \text{average in-reports per internet user})
\fi

\iffalse
\Rightarrow \text{number of internet users} = \frac{\text{total out-reports}}{\text{average in-reports per internet user}}
\fi
\# \text{ of internet users} = \frac{\text{total reported connections to internet users}}{\text{average in-reports per internet user}}
Study design
\# \text{ of internet users} = \frac{\text{total reported connections to internet users}}{\text{average in-reports per internet user}}
of internet users = \frac{\text{total reported connections to internet users}}{\text{average in-reports per internet user}}
We can ask respondents questions like “how many people are in your network?”

And then, “which of these people uses the internet?”
We can ask respondents questions like “how many people are in your network?”

… but what does it mean to ‘know’ someone?

=> we need to choose a tie definition
error in estimate

stronger tie

weaker tie

sampling error
Tie definition: survey experiment

- Previous research has found some evidence of a tie strength / accuracy tradeoff
- We designed an experiment to further test this question in our setting
Conversational Contact Network

- How many people did you have conversational contact with yesterday? By conversational contact, we mean anyone you spoke with face to face for at least three words.

Tie definition: survey experiment

- Previous research has found some evidence of a tie strength / accuracy tradeoff
- We designed an experiment to further test this question in our setting
Tie definition: survey experiment

- Previous research has found some evidence of a tie strength / accuracy tradeoff
- We designed an experiment to further test this question in our setting

Conversational Contact Network
- How many people did you have conversational contact with yesterday? By conversational contact, we mean anyone you spoke with face to face for at least three words.

Meal Network
- How many people did you share food or drink with yesterday? These people could be family members, friends, co-workers, neighbors, or other people. Please include all food and drink taken at any location, including at home, at work, at a cafe, or in a restaurant.
How many people did you share food or drink with yesterday?
How many people did you share food or drink with yesterday?

=> response tells us about network size
How many people did you share food or drink with yesterday?

=> response tells us about network size

Next, we want to know what proportion of respondent’s network uses the internet.

Ideally: ask respondent about each person in her network, one after another
How many people did you share food or drink with yesterday?

=> response tells us about network size

Next, we want to know what proportion of respondent’s network uses the internet.

Ideally: ask respondent about each person in her network, one after another

Problem: this would likely cause unacceptable levels of respondent fatigue
Instead, we ask respondents about a subset of their network contacts; we call this subset the **detailed alters**

We ask for information about the three network members who ‘come to mind’ first
Instead, we ask respondents about a subset of their network contacts; we call this subset the **detailed alters**

We ask for information about the three network members who ‘come to mind’ first

We treat these three detailed alters as if they were a simple random sample of the respondent’s network members
Instead, we ask respondents about a subset of their network contacts; we call this subset the **detailed alters**.

We ask for information about the three network members who ‘come to mind’ first.

We treat these three detailed alters as if they were a simple random sample of the respondent’s network members.

- in reality, some alters are probably more likely to come to mind than others.
- paper mathematically describes how estimates are sensitive to this condition.
- and we can check this empirically.
of internet users = \frac{\text{total reported connections to internet users}}{\text{average in-reports per internet user}}
of internet users = \frac{\text{total reported connections to internet users}}{\text{average in-reports per internet user}}
Estimating visibility

Can imagine many different approaches to this
Estimating visibility

Can imagine many different approaches to this

We chose something very simple: assume that people do not pay attention to whether or not they are on Facebook when they share meals with one another
Estimating visibility

Can imagine many different approaches to this

We chose something very simple: assume that people do not pay attention to whether or not they are on Facebook when they share meals with one another.

Our approach works if two quantities are equal:

- The rate at which people on the internet share meals with someone on FB
- The rate at which people on FB share meals with someone else on FB
Estimating visibility

Can imagine many different approaches to this

We chose something very simple: assume that people do not pay attention to whether or not they are on Facebook when they share meals with one another.

Our approach works if two quantities are equal:

- The rate at which people on the internet share meals with someone on FB
- The rate at which people on FB share meals with someone else on FB

We can estimate the second quantity from our survey responses.
Putting it all together

\[
\text{# of internet users} = \frac{\text{total reported connections to internet users}}{\text{average in-reports per internet user}}
\]
Recap: 3 key conditions

- Accurate reporting
- Detailed alters picked at random
- Meals shared between people without paying attention to whether they are on Facebook or not

Our paper has sensitivity framework for understanding what impact violating these conditions would have on estimates.

Framework also shows how these conditions can be relaxed or eliminated if additional data can be collected.

We'll see that the first two conditions can be checked empirically.
Results
Sample

- Random sample of Facebook users, taken using FB’s survey infrastructure
- Short survey, taken over web or mobile
- Looked at lots of calibration and post-stratification approaches, found that these mattered very little
- All analyses use rescaled bootstrap to estimate sampling uncertainty
Sample: 5 countries
Degrees
Distribution of reported network sizes: Brazil (topcoded at 30)

- **Degrees**

 - **Conversational contact**
 - **Meal**

 - Fraction of respondents against reported network size.
Distribution of reported network sizes
(topcoded at 30)

- Colombia
- Great Britain
- Indonesia
- United States
- Brazil

Fraction of respondents

Reported network size

Tie definition: Conversational contact, Meal

Conversational contact
Meal
Internal consistency checks
Internal consistency checks

Idea: come up with two independent ways of estimating the same quantity from network reports

Compare these independent estimates to one another

When all of the technical conditions are satisfied, estimates will agree (up to sampling noise)

Some reporting errors or other violations of conditions can be detected with IC checks
Internal consistency checks

connections from men to women = # connections from women to men
Normalized difference

$$\Delta_\alpha = \frac{1}{N_F} \left(\hat{d}_{F_{-\alpha}, F_\alpha} - \hat{d}_{F_\alpha, F_{-\alpha}} \right)$$

Example: reported connections to women made by men

Example: reported connections to men made by women
Normalized difference

\[\Delta_{\alpha} = \frac{1}{N_F} \left(\hat{d}_{F_{-\alpha},F_{\alpha}} - \hat{d}_{F_{\alpha},F_{-\alpha}} \right) \]

Example: reported connections to women made by men
Example: reported connections to men made by women

These can be estimated **independently** but they are the **same quantity**
Meals everyone else reports sharing with young women MINUS meals young women report sharing with everyone else.

Tie definition:
- Conversational contact
- Meal

Age group: young, middle, old.
Internal consistency checks: Brazil

![Graph showing average normalized difference by age group and tie definition for males and females.](image-url)
Young men report more connections to everyone else than everyone else reports to young men.
Internal consistency checks

So the IC checks give us a way to detect when conditions are not exactly met

We can also use the IC checks to compare the two different tie definitions to better understand which one is more accurate
Internal consistency checks: summary

- Built-in way to assess quality of reporting
- This is very useful for building up a picture of what kind of networks people can accurately report about
- Some evidence of reporting error (especially in Indonesia and Colombia); also suggestive of differential social visibility
- They can also form the basis for model-based approaches to improving estimates from a given network
- Results from these five countries and two networks show that meal network reports tend to be more accurate
Estimates
Estimates

Estimated percent of adult population (2015)

Tie definition
- Conversational contact
- Meal
Estimates: comparisons
Estimates: summary

- No gold standard data to compare against, so we can’t assess estimates directly
- Comparisons to other estimates in US and GB suggest our estimates are similar to other approaches, maybe slightly low
- Internal consistency checks show some evidence of reporting error (and modeling may help with this)
- Paper has sensitivity framework that can be used to formally understand what impact violating different conditions would have on estimates
Future directions
Tie strength

Weak

Strong

Time window

Short

Long
Tie strength

Time window

Weak

Strong

X - Rwanda scale-up

X
The diagram illustrates a correlation between tie strength and time window. The points marked with 'X' indicate:

- Rwanda scale-up
- Internet adoption study
X - Rwanda scale-up
X - internet adoption study
O - upcoming Hanoi study
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tie strength</td>
<td>X</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Strong</td>
<td>X</td>
<td>O</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

- X - Rwanda scale-up
- X - internet adoption study
- O - upcoming Hanoi study
- ? - your study?
Online sample → Estimate

- Fast
- Inexpensive
- Easy to experiment
- High time resolution
- ... but approximate
Conventional probability sample → Estimate
- Slow
- Expensive
- High quality estimate
Conventional probability sample → Estimate

- Slow
- Expensive
- High quality estimate
- Can collect information to help online estimates
● Network reporting framework can be used to understand how to measure things in conventional sample to improve online estimates
Online sample → Estimate → Conventional probability sample

Online sample → Estimate

Online sample → Estimate

...
Combine frequent, inexpensive, approximate online-based estimates with rarer, expensive conventional probability samples. These conventional samples can be used to improve online-based estimates.
Coming next...

- Internet adoption
 - Full sensitivity framework
 - Explore models to adjust for IC checks
 - Can also calculate estimated adoption by age and gender
 - And it’s possible to do some reporting adjustments from data we collected
Coming next...

- Internet adoption
 - Full sensitivity framework
 - Explore models to adjust for IC checks
 - Can also calculate estimated adoption by age and gender
 - And it’s possible to do some reporting adjustments from data we collected
- Sibling histories (PAA 2018 session 68-4, Thurs)
- Brazil: probability sample of 25,000 respondents
 - Validate network survival methods for adult mortality
 - Test estimating out-migration using network reports
- Hanoi network scale-up for key populations at risk of HIV
- Guidance on sampling and study design
Thanks!

- Collaborator, Curtiss Cobb

- My R packages `networkreporting` and `surveybootstrap` are available on CRAN
- Rwanda data are downloadable from the DHS website

- Feehan, Umubyeyi, Mahy, Hladik, and Salganik (2016) “Quantity vs quality: a survey experiment to improve the network scale-up method”, *American Journal of Epidemiology*
- Feehan and Salganik “Generalizing the network scaleup method”, *Sociological Methodology*.
- Feehan, Mahy, and Salganik “The network survival estimator for adult mortality: evidence from Rwanda”, *Demography*

See http://www.dennisfeehan.org for more information.