Collaborating with citizens to research society has a long history

“They have been largely made by field workers who do not have the opportunity to know and thus appreciate national and world situations”
People-Powered Research

The Zooniverse provides opportunities for people around the world to contribute to real discoveries in fields ranging from astronomy to zoology. Welcome to the largest online platform for collaborative volunteer research.

Get involved now!
What are these?

And what do they have to do with these?
Who is better at spotting the tiger?
Who is better at spotting the tiger?
WildCam Gorongosa
Identify animals in trail camera images from Gorongosa National Park!

Get Started

Fossil Finder
Join us in the search and discovery of fossils at Lake Turkana, Kenya.

Get Started

Galaxy Zoo: Bar Lengths
Measure the engines of evolution in disk galaxies.

Get Started

Whales as Individuals
Help us identify individual Humpback Whales by cluing our computer algorithms in to patterns on their tails

Get Started

Season Spotter Image Marking
Help keep an eye on changing seasons by marking images!

Get Started

Season Spotter Questions
Help keep an eye on changing seasons by answering questions!

Get Started

Chimp & See
Discover the secret life of chimpanzees. We need your help to study, explore, and learn from thousands of videos.

Get Started

AnnoTate
Help transcribe documents from the Tate collection, and reveal the secret lives of artists.

Get Started

Science Gossip
Uncover the history of citizen science. Help us to classify their drawings and map the origins of citizen science.

Get Started

Wildebeest Watch
Explore collective intelligence in wildebeest!

Get Started
Snapshot Serengeti is a Zooniverse project.
The Zooniverse is a collection of web-based Citizen Science projects that use the efforts and abilities of volunteers to help researchers deal with the flood of data that confronts them.

Our Projects
We currently have 12 projects on subjects ranging from astronomy to climatology to biology to humanities.

Welcome to Snapshot Serengeti
Hundreds of camera traps in Serengeti National Park, Tanzania, are providing a powerful new window into the dynamics of Africa's most elusive wildlife species. We need your help to classify all the different animals caught in millions of camera trap images.

Start classifying
Citizen science is good for research situations where:

1. The volume of digitized raw data, particularly text, images, videos and sound has increased significantly;
2. Computers currently do a poor job of classifying this data;
3. Citizens with a small amount of training can produce reasonably accurate judgments;
4. Combining the insights of multiple citizens yields measurements as accurate as produced by a subject expert.
Types of citizen science research

1. Image, video and sound classification
 - Collaborative ethnographic interpretation
 - Post-disaster research
2. Transcription and text recognition
Demographic application 1.
Transcription of complex material

Measuring the ANZACs
http://www.measuringtheanzacs.org/
@MeasuringANZACs

US Colored Troops
http://usct.cc
@transcribe_usct
Measuring the ANZACs

Do your part to help transcribe first-hand accounts of New Zealanders from the Australian and New Zealand Army Corps circa World War I.

START MARKING

or

START TRANSCRIBING
1. Classify pages to open up page-dependent menus and instructions.
2. Citizen scientists identify fields and mark their location for transcription

Mark is used to identify specific pieces of data; for example, dates, nationalities, heights and weights, etc. You will see marks submitted by other volunteers, although you can hide these for visibility. If an item is already marked, you can skip over it! You can also delete others’ marks, which counts as a vote for that mark being incorrect.
3. Transcribe marked fields via two routes …
Measuring the ANZACs

Do your part to help transcribe first-hand accounts of New Zealanders from the Australian and New Zealand Army Corps circa World War I.

START MARKING or START TRANSCRIPTION
Essentially random entries not yet transcribed
Accuracy of RAs versus citizens?!
<table>
<thead>
<tr>
<th></th>
<th>Attestations (NZ RAs)</th>
<th></th>
<th>Casualty Rolls (Canadian RAs)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Given</td>
<td>Last</td>
<td>Given</td>
<td>Last</td>
</tr>
<tr>
<td>Mean similarity score to truth</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>(1 = absolute accuracy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion absolutely accurate</td>
<td>0.91</td>
<td>0.95</td>
<td>0.93</td>
<td>0.98</td>
</tr>
<tr>
<td>Proportion with similarity score > 0.9</td>
<td>0.95</td>
<td>0.98</td>
<td>0.95</td>
<td>0.99</td>
</tr>
<tr>
<td>Proportion with similarity score > 0.8</td>
<td></td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Proportion with > 3 words in string (more likely problematic transcriptions)</td>
<td>0.003</td>
<td>0.0002</td>
<td>0.030</td>
<td>0.003</td>
</tr>
</tbody>
</table>

	Citizen transcription			
	Given	Surname	Serial number	
Mean similarity score to truth	0.98	0.98	0.98	
(1 = absolute accuracy)				
Proportion absolutely accurate	0.87	0.84	0.89	
Proportion with similarity score > 0.9	0.95	0.95	0.95	
Proportion with similarity score > 0.8	0.97	0.98	0.98	
Proportion with > 3 words in string (more likely problematic transcriptions)	0.003	0.003	0.003	
Name:

Co.:

Company (see field guide for letters)
Select...

Age:

Height:

Feet
Select...

Inches
N/A

Inch fractions (optional)
N/A

Remarks: Sub. Mustard out at Rusk, took Rovad Barracks.

service
Demographic application 2: Image classification

Earthworm Invasion
Earthworms are causing major changes in hardwood forests

Earthworm affected

No worms

Photo credit: Smithsonian Insider
Craven et al. 2016. Global Change Biology
Help us understand how land use impacts earthworm invasion

Get started

There are multiple options for how to help classify land use. Each task involves drawing:
1) draw roads using lines
2) draw farm fields using rectangles
3) draw in forest using rectangles

Classify forests and trees Classify roads Classify agriculture Identify buildings and farm yards
Step 1: Do you see a field?
Step 2: Place polygons around the fields
Humans 1-7: Borgholm 1939 image 3

n=7: 24.00 % Forest on average
(17.95% to 31.09%)
Humans 1-7: Borgholm 1939 image 3

n=7
24.00 % Forest on average (17.95% to 31.09%)
Disaster response: Image classification

Mark the features you see. If you don't see any, just click "Done" to move on.

If you're not sure what to do, click the "Need some help with this task?" button below.

- Road Blockage: 0 drawn
- Flood: 0 drawn
- Temporary Settlement: 0 drawn
- Structural damage: 0 drawn

Need some help with this task?
- Hide previous marks

- Unclassifiable Image
- Ocean Only (no land)

Done & Talk Done

Show the project tutorial